• Home   /  
  • Archive by category "1"

Evolution Essay Outline

The evidence for evolution

Darwin and other 19th-century biologists found compelling evidence for biological evolution in the comparative study of living organisms, in their geographic distribution, and in the fossil remains of extinct organisms. Since Darwin’s time, the evidence from these sources has become considerably stronger and more comprehensive, while biological disciplines that emerged more recently—genetics, biochemistry, physiology, ecology, animal behaviour (ethology), and especially molecular biology—have supplied powerful additional evidence and detailed confirmation. The amount of information about evolutionary history stored in the DNA and proteins of living things is virtually unlimited; scientists can reconstruct any detail of the evolutionary history of life by investing sufficient time and laboratory resources.

Evolutionists no longer are concerned with obtaining evidence to support the fact of evolution but rather are concerned with what sorts of knowledge can be obtained from different sources of evidence. The following sections identify the most productive of these sources and illustrate the types of information they have provided.

The fossil record

Paleontologists have recovered and studied the fossil remains of many thousands of organisms that lived in the past. This fossil record shows that many kinds of extinct organisms were very different in form from any now living. It also shows successions of organisms through time (seefaunal succession, law of; geochronology: Determining the relationships of fossils with rock strata), manifesting their transition from one form to another.

When an organism dies, it is usually destroyed by other forms of life and by weathering processes. On rare occasions some body parts—particularly hard ones such as shells, teeth, or bones—are preserved by being buried in mud or protected in some other way from predators and weather. Eventually, they may become petrified and preserved indefinitely with the rocks in which they are embedded. Methods such as radiometric dating—measuring the amounts of natural radioactive atoms that remain in certain minerals to determine the elapsed time since they were constituted—make it possible to estimate the time period when the rocks, and the fossils associated with them, were formed.

Radiometric dating indicates that Earth was formed about 4.5 billion years ago. The earliest fossils resemble microorganisms such as bacteria and cyanobacteria (blue-green algae); the oldest of these fossils appear in rocks 3.5 billion years old (seePrecambrian time). The oldest known animal fossils, about 700 million years old, come from the so-called Ediacara fauna, small wormlike creatures with soft bodies. Numerous fossils belonging to many living phyla and exhibiting mineralized skeletons appear in rocks about 540 million years old. These organisms are different from organisms living now and from those living at intervening times. Some are so radically different that paleontologists have created new phyla in order to classify them. (SeeCambrian Period.) The first vertebrates, animals with backbones, appeared about 400 million years ago; the first mammals, less than 200 million years ago. The history of life recorded by fossils presents compelling evidence of evolution.

The fossil record is incomplete. Of the small proportion of organisms preserved as fossils, only a tiny fraction have been recovered and studied by paleontologists. In some cases the succession of forms over time has been reconstructed in detail. One example is the evolution of the horse. The horse can be traced to an animal the size of a dog having several toes on each foot and teeth appropriate for browsing; this animal, called the dawn horse (genus Hyracotherium), lived more than 50 million years ago. The most recent form, the modern horse (Equus), is much larger in size, is one-toed, and has teeth appropriate for grazing. The transitional forms are well preserved as fossils, as are many other kinds of extinct horses that evolved in different directions and left no living descendants.

Using recovered fossils, paleontologists have reconstructed examples of radical evolutionary transitions in form and function. For example, the lower jaw of reptiles contains several bones, but that of mammals only one. The other bones in the reptile jaw unmistakably evolved into bones now found in the mammalian ear. At first, such a transition would seem unlikely—it is hard to imagine what function such bones could have had during their intermediate stages. Yet paleontologists discovered two transitional forms of mammal-like reptiles, called therapsids, that had a double jaw joint (i.e., two hinge points side by side)—one joint consisting of the bones that persist in the mammalian jaw and the other composed of the quadrate and articular bones, which eventually became the hammer and anvil of the mammalian ear. (See alsomammal: Skeleton.)

For skeptical contemporaries of Darwin, the “missing link”—the absence of any known transitional form between apes and humans—was a battle cry, as it remained for uninformed people afterward. Not one but many creatures intermediate between living apes and humans have since been found as fossils. The oldest known fossil hominins—i.e., primates belonging to the human lineage after it separated from lineages going to the apes—are 6 million to 7 million years old, come from Africa, and are known as Sahelanthropus and Orrorin (or Praeanthropus), which were predominantly bipedal when on the ground but which had very small brains. Ardipithecus lived about 4.4 million years ago, also in Africa. Numerous fossil remains from diverse African origins are known of Australopithecus, a hominin that appeared between 3 million and 4 million years ago. Australopithecus had an upright human stance but a cranial capacity of less than 500 cc (equivalent to a brain weight of about 500 grams), comparable to that of a gorilla or a chimpanzee and about one-third that of humans. Its head displayed a mixture of ape and human characteristics—a low forehead and a long, apelike face but with teeth proportioned like those of humans. Other early hominins partly contemporaneous with Australopithecus include Kenyanthropus and Paranthropus; both had comparatively small brains, although some species of Paranthropus had larger bodies. Paranthropus represents a side branch in the hominin lineage that became extinct. Along with increased cranial capacity, other human characteristics have been found in Homo habilis, which lived about 1.5 million to 2 million years ago in Africa and had a cranial capacity of more than 600 cc (brain weight of 600 grams), and in H. erectus, which lived between 0.5 million and more than 1.5 million years ago, apparently ranged widely over Africa, Asia, and Europe, and had a cranial capacity of 800 to 1,100 cc (brain weight of 800 to 1,100 grams). The brain sizes of H. ergaster, H. antecessor, and H. heidelbergensis were roughly that of the brain of H. erectus, some of which species were partly contemporaneous, though they lived in different regions of the Eastern Hemisphere. (See alsohuman evolution.)

Structural similarities

The skeletons of turtles, horses, humans, birds, and bats are strikingly similar, in spite of the different ways of life of these animals and the diversity of their environments. The correspondence, bone by bone, can easily be seen not only in the limbs but also in every other part of the body. From a purely practical point of view, it is incomprehensible that a turtle should swim, a horse run, a person write, and a bird or a bat fly with forelimb structures built of the same bones. An engineer could design better limbs in each case. But if it is accepted that all of these skeletons inherited their structures from a common ancestor and became modified only as they adapted to different ways of life, the similarity of their structures makes sense.

Comparative anatomy investigates the homologies, or inherited similarities, among organisms in bone structure and in other parts of the body. The correspondence of structures is typically very close among some organisms—the different varieties of songbirds, for instance—but becomes less so as the organisms being compared are less closely related in their evolutionary history. The similarities are less between mammals and birds than they are among mammals, and they are still less between mammals and fishes. Similarities in structure, therefore, not only manifest evolution but also help to reconstruct the phylogeny, or evolutionary history, of organisms.

Comparative anatomy also reveals why most organismic structures are not perfect. Like the forelimbs of turtles, horses, humans, birds, and bats, an organism’s body parts are less than perfectly adapted because they are modified from an inherited structure rather than designed from completely “raw” materials for a specific purpose. The imperfection of structures is evidence for evolution and against antievolutionist arguments that invoke intelligent design (see belowIntelligent design and its critics).

Embryonic development and vestiges

Darwin and his followers found support for evolution in the study of embryology, the science that investigates the development of organisms from fertilized egg to time of birth or hatching. Vertebrates, from fishes through lizards to humans, develop in ways that are remarkably similar during early stages, but they become more and more differentiated as the embryos approach maturity. The similarities persist longer between organisms that are more closely related (e.g., humans and monkeys) than between those less closely related (humans and sharks). Common developmental patterns reflect evolutionary kinship. Lizards and humans share a developmental pattern inherited from their remote common ancestor; the inherited pattern of each was modified only as the separate descendant lineages evolved in different directions. The common embryonic stages of the two creatures reflect the constraints imposed by this common inheritance, which prevents changes that have not been necessitated by their diverging environments and ways of life.

The embryos of humans and other nonaquatic vertebrates exhibit gill slits even though they never breathe through gills. These slits are found in the embryos of all vertebrates because they share as common ancestors the fish in which these structures first evolved. Human embryos also exhibit by the fourth week of development a well-defined tail, which reaches maximum length at six weeks. Similar embryonic tails are found in other mammals, such as dogs, horses, and monkeys; in humans, however, the tail eventually shortens, persisting only as a rudiment in the adult coccyx.

A close evolutionary relationship between organisms that appear drastically different as adults can sometimes be recognized by their embryonic homologies. Barnacles, for example, are sedentary crustaceans with little apparent likeness to such free-swimming crustaceans as lobsters, shrimps, or copepods. Yet barnacles pass through a free-swimming larval stage, the nauplius, which is unmistakably similar to that of other crustacean larvae.

Embryonic rudiments that never fully develop, such as the gill slits in humans, are common in all sorts of animals. Some, however, like the tail rudiment in humans, persist as adult vestiges, reflecting evolutionary ancestry. The most familiar rudimentaryorgan in humans is the vermiform appendix. This wormlike structure attaches to a short section of intestine called the cecum, which is located at the point where the large and small intestines join. The human vermiform appendix is a functionless vestige of a fully developed organ present in other mammals, such as the rabbit and other herbivores, where a large cecum and appendix store vegetable cellulose to enable its digestion with the help of bacteria. Vestiges are instances of imperfections—like the imperfections seen in anatomical structures—that argue against creation by design but are fully understandable as a result of evolution.


Darwin also saw a confirmation of evolution in the geographic distribution of plants and animals, and later knowledge has reinforced his observations. For example, there are about 1,500 known species of Drosophilavinegar flies in the world; nearly one-third of them live in Hawaii and nowhere else, although the total area of the archipelago is less than one-twentieth the area of California or Germany. Also in Hawaii are more than 1,000 species of snails and other land mollusks that exist nowhere else. This unusual diversity is easily explained by evolution. The islands of Hawaii are extremely isolated and have had few colonizers—i.e, animals and plants that arrived there from elsewhere and established populations. Those species that did colonize the islands found many unoccupied ecological niches, local environments suited to sustaining them and lacking predators that would prevent them from multiplying. In response, these species rapidly diversified; this process of diversifying in order to fill ecological niches is called adaptive radiation.

Each of the world’s continents has its own distinctive collection of animals and plants. In Africa are rhinoceroses, hippopotamuses, lions, hyenas, giraffes, zebras, lemurs, monkeys with narrow noses and nonprehensile tails, chimpanzees, and gorillas. South America, which extends over much the same latitudes as Africa, has none of these animals; it instead has pumas, jaguars, tapir, llamas, raccoons, opossums, armadillos, and monkeys with broad noses and large prehensile tails.

These vagaries of biogeography are not due solely to the suitability of the different environments. There is no reason to believe that South American animals are not well suited to living in Africa or those of Africa to living in South America. The islands of Hawaii are no better suited than other Pacific islands for vinegar flies, nor are they less hospitable than other parts of the world for many absent organisms. In fact, although no large mammals are native to the Hawaiian islands, pigs and goats have multiplied there as wild animals since being introduced by humans. This absence of many species from a hospitable environment in which an extraordinary variety of other species flourish can be explained by the theory of evolution, which holds that species can exist and evolve only in geographic areas that were colonized by their ancestors.

Molecular biology

The field of molecular biology provides the most detailed and convincing evidence available for biological evolution. In its unveiling of the nature of DNA and the workings of organisms at the level of enzymes and other protein molecules, it has shown that these molecules hold information about an organism’s ancestry. This has made it possible to reconstruct evolutionary events that were previously unknown and to confirm and adjust the view of events already known. The precision with which these events can be reconstructed is one reason the evidence from molecular biology is so compelling. Another reason is that molecular evolution has shown all living organisms, from bacteria to humans, to be related by descent from common ancestors.

A remarkable uniformity exists in the molecular components of organisms—in the nature of the components as well as in the ways in which they are assembled and used. In all bacteria, plants, animals, and humans, the DNA comprises a different sequence of the same four component nucleotides, and all the various proteins are synthesized from different combinations and sequences of the same 20 amino acids, although several hundred other amino acids do exist. The genetic code by which the information contained in the DNA of the cellnucleus is passed on to proteins is virtually everywhere the same. Similar metabolic pathways—sequences of biochemical reactions (seemetabolism)—are used by the most diverse organisms to produce energy and to make up the cell components.

This unity reveals the genetic continuity and common ancestry of all organisms. There is no other rational way to account for their molecular uniformity when numerous alternative structures are equally likely. The genetic code serves as an example. Each particular sequence of three nucleotides in the nuclear DNA acts as a pattern for the production of exactly the same amino acid in all organisms. This is no more necessary than it is for a language to use a particular combination of letters to represent a particular object. If it is found that certain sequences of letters—planet, tree, woman—are used with identical meanings in a number of different books, one can be sure that the languages used in those books are of common origin.

Genes and proteins are long molecules that contain information in the sequence of their components in much the same way as sentences of the English language contain information in the sequence of their letters and words. The sequences that make up the genes are passed on from parents to offspring and are identical except for occasional changes introduced by mutations. As an illustration, one may assume that two books are being compared. Both books are 200 pages long and contain the same number of chapters. Closer examination reveals that the two books are identical page for page and word for word, except that an occasional word—say, one in 100—is different. The two books cannot have been written independently; either one has been copied from the other, or both have been copied, directly or indirectly, from the same original book. Similarly, if each component nucleotide of DNA is represented by one letter, the complete sequence of nucleotides in the DNA of a higher organism would require several hundred books of hundreds of pages, with several thousand letters on each page. When the “pages” (or sequences of nucleotides) in these “books” (organisms) are examined one by one, the correspondence in the “letters” (nucleotides) gives unmistakable evidence of common origin.

The two arguments presented above are based on different grounds, although both attest to evolution. Using the alphabet analogy, the first argument says that languages that use the same dictionary—the same genetic code and the same 20 amino acids—cannot be of independent origin. The second argument, concerning similarity in the sequence of nucleotides in the DNA (and thus the sequence of amino acids in the proteins), says that books with very similar texts cannot be of independent origin.

The evidence of evolution revealed by molecular biology goes even farther. The degree of similarity in the sequence of nucleotides or of amino acids can be precisely quantified. For example, in humans and chimpanzees, the protein molecule called cytochrome c, which serves a vital function in respiration within cells, consists of the same 104 amino acids in exactly the same order. It differs, however, from the cytochrome c of rhesus monkeys by 1 amino acid, from that of horses by 11 additional amino acids, and from that of tuna by 21 additional amino acids. The degree of similarity reflects the recency of common ancestry. Thus, the inferences from comparative anatomy and other disciplines concerning evolutionary history can be tested in molecular studies of DNA and proteins by examining their sequences of nucleotides and amino acids. (See belowDNA and protein as informational macromolecules.)

The authority of this kind of test is overwhelming; each of the thousands of genes and thousands of proteins contained in an organism provides an independent test of that organism’s evolutionary history. Not all possible tests have been performed, but many hundreds have been done, and not one has given evidence contrary to evolution. There is probably no other notion in any field of science that has been as extensively tested and as thoroughly corroborated as the evolutionary origin of living organisms.

History of evolutionary theory

Early ideas

All human cultures have developed their own explanations for the origin of the world and of human beings and other creatures. Traditional Judaism and Christianity explain the origin of living beings and their adaptations to their environments—wings, gills, hands, flowers—as the handiwork of an omniscient God. The philosophers of ancient Greece had their own creation myths. Anaximander proposed that animals could be transformed from one kind into another, and Empedocles speculated that they were made up of various combinations of preexisting parts. Closer to modern evolutionary ideas were the proposals of early Church Fathers such as Gregory of Nazianzus and Augustine, both of whom maintained that not all species of plants and animals were created by God; rather, some had developed in historical times from God’s creations. Their motivation was not biological but religious—it would have been impossible to hold representatives of all species in a single vessel such as Noah’s Ark; hence, some species must have come into existence only after the Flood.

The notion that organisms may change by natural processes was not investigated as a biological subject by Christian theologians of the Middle Ages, but it was, usually incidentally, considered as a possibility by many, including Albertus Magnus and his student Thomas Aquinas. Aquinas concluded, after detailed discussion, that the development of living creatures such as maggots and flies from nonliving matter such as decaying meat was not incompatible with Christian faith or philosophy. But he left it to others to determine whether this actually happened.

The idea of progress, particularly the belief in unbounded human progress, was central to the Enlightenment of the 18th century, particularly in France among such philosophers as the marquis de Condorcet and Denis Diderot and such scientists as Georges-Louis Leclerc, comte de Buffon. But belief in progress did not necessarily lead to the development of a theory of evolution. Pierre-Louis Moreau de Maupertuis proposed the spontaneous generation and extinction of organisms as part of his theory of origins, but he advanced no theory of evolution—i.e., the transformation of one species into another through knowable, natural causes. Buffon, one of the greatest naturalists of the time, explicitly considered—and rejected—the possible descent of several species from a common ancestor. He postulated that organisms arise from organic molecules by spontaneous generation, so that there could be as many kinds of animals and plants as there are viable combinations of organic molecules.

The English physician Erasmus Darwin, grandfather of Charles Darwin, offered in his Zoonomia; or, The Laws of Organic Life (1794–96) some evolutionary speculations, but they were not further developed and had no real influence on subsequent theories. The Swedish botanist Carolus Linnaeus devised the hierarchical system of plant and animal classification that is still in use in a modernized form. Although he insisted on the fixity of species, his classification system eventually contributed much to the acceptance of the concept of common descent.

The great French naturalist Jean-Baptiste de Monet, chevalier de Lamarck, held the enlightened view of his age that living organisms represent a progression, with humans as the highest form. From this idea he proposed, in the early years of the 19th century, the first broad theory of evolution. Organisms evolve through eons of time from lower to higher forms, a process still going on, always culminating in human beings. As organisms become adapted to their environments through their habits, modifications occur. Use of an organ or structure reinforces it; disuse leads to obliteration. The characteristics acquired by use and disuse, according to this theory, would be inherited. This assumption, later called the inheritance of acquired characteristics (or Lamarckism), was thoroughly disproved in the 20th century. Although his theory did not stand up in the light of later knowledge, Lamarck made important contributions to the gradual acceptance of biological evolution and stimulated countless later studies.

Charles Darwin

The founder of the modern theory of evolution was Charles Darwin. The son and grandson of physicians, he enrolled as a medical student at the University of Edinburgh. After two years, however, he left to study at the University of Cambridge and prepare to become a clergyman. He was not an exceptional student, but he was deeply interested in natural history. On December 27, 1831, a few months after his graduation from Cambridge, he sailed as a naturalist aboard the HMS Beagle on a round-the-world trip that lasted until October 1836. Darwin was often able to disembark for extended trips ashore to collect natural specimens.

The discovery of fossil bones from large extinct mammals in Argentina and the observation of numerous species of finches in the Galapagos Islands were among the events credited with stimulating Darwin’s interest in how species originate. In 1859 he published On the Origin of Species by Means of Natural Selection, a treatise establishing the theory of evolution and, most important, the role of natural selection in determining its course. He published many other books as well, notably The Descent of Man and Selection in Relation to Sex (1871), which extends the theory of natural selection to human evolution.

Darwin must be seen as a great intellectual revolutionary who inaugurated a new era in the cultural history of humankind, an era that was the second and final stage of the Copernican revolution that had begun in the 16th and 17th centuries under the leadership of men such as Nicolaus Copernicus, Galileo, and Isaac Newton. The Copernican revolution marked the beginnings of modern science. Discoveries in astronomy and physics overturned traditional conceptions of the universe. Earth no longer was seen as the centre of the universe but was seen as a small planet revolving around one of myriad stars; the seasons and the rains that make crops grow, as well as destructive storms and other vagaries of weather, became understood as aspects of natural processes; the revolutions of the planets were now explained by simple laws that also accounted for the motion of projectiles on Earth.

The significance of these and other discoveries was that they led to a conception of the universe as a system of matter in motion governed by laws of nature. The workings of the universe no longer needed to be attributed to the ineffable will of a divine Creator; rather, they were brought into the realm of science—an explanation of phenomena through natural laws. Physical phenomena such as tides, eclipses, and positions of the planets could now be predicted whenever the causes were adequately known. Darwin accumulated evidence showing that evolution had occurred, that diverse organisms share common ancestors, and that living beings have changed drastically over the course of Earth’s history. More important, however, he extended to the living world the idea of nature as a system of matter in motion governed by natural laws.

Before Darwin, the origin of Earth’s living things, with their marvelous contrivances for adaptation, had been attributed to the design of an omniscient God. He had created the fish in the waters, the birds in the air, and all sorts of animals and plants on the land. God had endowed these creatures with gills for breathing, wings for flying, and eyes for seeing, and he had coloured birds and flowers so that human beings could enjoy them and recognize God’s wisdom. Christian theologians, from Aquinas on, had argued that the presence of design, so evident in living beings, demonstrates the existence of a supreme Creator; the argument from design was Aquinas’s “fifth way” for proving the existence of God. In 19th-century England the eight Bridgewater Treatises were commissioned so that eminent scientists and philosophers would expand on the marvels of the natural world and thereby set forth “the Power, wisdom, and goodness of God as manifested in the Creation.”

The British theologian William Paley in his Natural Theology (1802) used natural history, physiology, and other contemporary knowledge to elaborate the argument from design. If a person should find a watch, even in an uninhabited desert, Paley contended, the harmony of its many parts would force him to conclude that it had been created by a skilled watchmaker; and, Paley went on, how much more intricate and perfect in design is the human eye, with its transparent lens, its retina placed at the precise distance for forming a distinct image, and its large nerve transmitting signals to the brain.

The argument from design seems to be forceful. A ladder is made for climbing, a knife for cutting, and a watch for telling time; their functional design leads to the conclusion that they have been fashioned by a carpenter, a smith, or a watchmaker. Similarly, the obvious functional design of animals and plants seems to denote the work of a Creator. It was Darwin’s genius that he provided a natural explanation for the organization and functional design of living beings. (For additional discussion of the argument from design and its revival in the 1990s, see belowIntelligent design and its critics.)

Darwin accepted the facts of adaptation—hands are for grasping, eyes for seeing, lungs for breathing. But he showed that the multiplicity of plants and animals, with their exquisite and varied adaptations, could be explained by a process of natural selection, without recourse to a Creator or any designer agent. This achievement would prove to have intellectual and cultural implications more profound and lasting than his multipronged evidence that convinced contemporaries of the fact of evolution.

Darwin’s theory of natural selection is summarized in the Origin of Species as follows:

As many more individuals are produced than can possibly survive, there must in every case be a struggle for existence, either one individual with another of the same species, or with the individuals of distinct species, or with the physical conditions of life.…Can it, then, be thought improbable, seeing that variations useful to man have undoubtedly occurred, that other variations useful in some way to each being in the great and complex battle of life, should sometimes occur in the course of thousands of generations? If such do occur, can we doubt (remembering that many more individuals are born than can possibly survive) that individuals having any advantage, however slight, over others, would have the best chance of surviving and of procreating their kind? On the other hand, we may feel sure that any variation in the least degree injurious would be rigidly destroyed. This preservation of favourable variations and the rejection of injurious variations, I call Natural Selection.

Natural selection was proposed by Darwin primarily to account for the adaptive organization of living beings; it is a process that promotes or maintains adaptation. Evolutionary change through time and evolutionary diversification (multiplication of species) are not directly promoted by natural selection, but they often ensue as by-products of natural selection as it fosters adaptation to different environments.

Modern conceptions

The Darwinian aftermath

The publication of the Origin of Species produced considerable public excitement. Scientists, politicians, clergymen, and notables of all kinds read and discussed the book, defending or deriding Darwin’s ideas. The most visible actor in the controversies immediately following publication was the English biologist T.H. Huxley, known as “Darwin’s bulldog,” who defended the theory of evolution with articulate and sometimes mordant words on public occasions as well as in numerous writings. Evolution by natural selection was indeed a favourite topic in society salons during the 1860s and beyond. But serious scientific controversies also arose, first in Britain and then on the Continent and in the United States.

One occasional participant in the discussion was the British naturalist Alfred Russel Wallace, who had hit upon the idea of natural selection independently and had sent a short manuscript about it to Darwin from the Malay Archipelago, where he was collecting specimens and writing. On July 1, 1858, one year before the publication of the Origin, a paper jointly authored by Wallace and Darwin was presented, in the absence of both, to the Linnean Society in London—with apparently little notice. Greater credit is duly given to Darwin than to Wallace for the idea of evolution by natural selection; Darwin developed the theory in considerably more detail, provided far more evidence for it, and was primarily responsible for its acceptance. Wallace’s views differed from Darwin’s in several ways, most importantly in that Wallace did not think natural selection sufficient to account for the origin of human beings, which in his view required direct divine intervention.

A younger English contemporary of Darwin, with considerable influence during the latter part of the 19th and in the early 20th century, was Herbert Spencer. A philosopher rather than a biologist, he became an energetic proponent of evolutionary ideas, popularized a number of slogans, such as “survival of the fittest” (which was taken up by Darwin in later editions of the Origin), and engaged in social and metaphysical speculations. His ideas considerably damaged proper understanding and acceptance of the theory of evolution by natural selection. Darwin wrote of Spencer’s speculations:

His deductive manner of treating any subject is wholly opposed to my frame of mind.…His fundamental generalizations (which have been compared in importance by some persons with Newton’s laws!) which I dare say may be very valuable under a philosophical point of view, are of such a nature that they do not seem to me to be of any strictly scientific use.

Most pernicious was the crude extension by Spencer and others of the notion of the “struggle for existence” to human economic and social life that became known as social Darwinism (see belowScientific acceptance and extension to other disciplines).

The most serious difficulty facing Darwin’s evolutionary theory was the lack of an adequate theory of inheritance that would account for the preservation through the generations of the variations on which natural selection was supposed to act. Contemporary theories of “blending inheritance” proposed that offspring merely struck an average between the characteristics of their parents. But as Darwin became aware, blending inheritance (including his own theory of “pangenesis,” in which each organ and tissue of an organism throws off tiny contributions of itself that are collected in the sex organs and determine the configuration of the offspring) could not account for the conservation of variations, because differences between variant offspring would be halved each generation, rapidly reducing the original variation to the average of the preexisting characteristics.

The missing link in Darwin’s argument was provided by Mendelian genetics. About the time the Origin of Species was published, the Augustinian monk Gregor Mendel was starting a long series of experiments with peas in the garden of his monastery in Brünn, Austria-Hungary (now Brno, Czech Republic). These experiments and the analysis of their results are by any standard an example of masterly scientific method. Mendel’s paper, published in 1866 in the Proceedings of the Natural Science Society of Brünn, formulated the fundamental principles of the theory of heredity that is still current. His theory accounts for biological inheritance through particulate factors (now known as genes) inherited one from each parent, which do not mix or blend but segregate in the formation of the sex cells, or gametes.

Mendel’s discoveries remained unknown to Darwin, however, and, indeed, they did not become generally known until 1900, when they were simultaneously rediscovered by a number of scientists on the Continent. In the meantime, Darwinism in the latter part of the 19th century faced an alternative evolutionary theory known as neo-Lamarckism. This hypothesis shared with Lamarck’s the importance of use and disuse in the development and obliteration of organs, and it added the notion that the environment acts directly on organic structures, which explained their adaptation to the way of life and environment of the organism. Adherents of this theory discarded natural selection as an explanation for adaptation to the environment.

Prominent among the defenders of natural selection was the German biologist August Weismann, who in the 1880s published his germ plasm theory. He distinguished two substances that make up an organism: the soma, which comprises most body parts and organs, and the germ plasm, which contains the cells that give rise to the gametes and hence to progeny. Early in the development of an egg, the germ plasm becomes segregated from the somatic cells that give rise to the rest of the body. This notion of a radical separation between germ plasm and soma—that is, between the reproductive tissues and all other body tissues—prompted Weismann to assert that inheritance of acquired characteristics was impossible, and it opened the way for his championship of natural selection as the only major process that would account for biological evolution. Weismann’s ideas became known after 1896 as neo-Darwinism.

The synthetic theory

The rediscovery in 1900 of Mendel’s theory of heredity, by the Dutch botanist and geneticist Hugo de Vries and others, led to an emphasis on the role of heredity in evolution. De Vries proposed a new theory of evolution known as mutationism, which essentially did away with natural selection as a major evolutionary process. According to de Vries (who was joined by other geneticists such as William Bateson in England), two kinds of variation take place in organisms. One is the “ordinary” variability observed among individuals of a species, which is of no lasting consequence in evolution because, according to de Vries, it could not “lead to a transgression of the species border [i.e., to establishment of new species] even under conditions of the most stringent and continued selection.” The other consists of the changes brought about by mutations, spontaneous alterations of genes that result in large modifications of the organism and give rise to new species: “The new species thus originates suddenly, it is produced by the existing one without any visible preparation and without transition.”

Mutationism was opposed by many naturalists and in particular by the so-called biometricians, led by the English statistician Karl Pearson, who defended Darwinian natural selection as the major cause of evolution through the cumulative effects of small, continuous, individual variations (which the biometricians assumed passed from one generation to the next without being limited by Mendel’s laws of inheritance [seeMendelism]).

The controversy between mutationists (also referred to at the time as Mendelians) and biometricians approached a resolution in the 1920s and ’30s through the theoretical work of geneticists. These scientists used mathematical arguments to show, first, that continuous variation (in such characteristics as body size, number of eggs laid, and the like) could be explained by Mendel’s laws and, second, that natural selection acting cumulatively on small variations could yield major evolutionary changes in form and function. Distinguished members of this group of theoretical geneticists were R.A. Fisher and J.B.S. Haldane in Britain and Sewall Wright in the United States. Their work contributed to the downfall of mutationism and, most important, provided a theoretical framework for the integration of genetics into Darwin’s theory of natural selection. Yet their work had a limited impact on contemporary biologists for several reasons—it was formulated in a mathematical language that most biologists could not understand; it was almost exclusively theoretical, with little empirical corroboration; and it was limited in scope, largely omitting many issues, such as speciation (the process by which new species are formed), that were of great importance to evolutionists.

A major breakthrough came in 1937 with the publication of Genetics and the Origin of Species by Theodosius Dobzhansky, a Russian-born American naturalist and experimental geneticist. Dobzhansky’s book advanced a reasonably comprehensive account of the evolutionary process in genetic terms, laced with experimental evidence supporting the theoretical argument. Genetics and the Origin of Species may be considered the most important landmark in the formulation of what came to be known as the synthetic theory of evolution, effectively combining Darwinian natural selection and Mendelian genetics. It had an enormous impact on naturalists and experimental biologists, who rapidly embraced the new understanding of the evolutionary process as one of genetic change in populations. Interest in evolutionary studies was greatly stimulated, and contributions to the theory soon began to follow, extending the synthesis of genetics and natural selection to a variety of biological fields.

The main writers who, together with Dobzhansky, may be considered the architects of the synthetic theory were the German-born American zoologist Ernst Mayr, the English zoologist Julian Huxley, the American paleontologist George Gaylord Simpson, and the American botanist George Ledyard Stebbins. These researchers contributed to a burst of evolutionary studies in the traditional biological disciplines and in some emerging ones—notably population genetics and, later, evolutionary ecology (seecommunity ecology). By 1950 acceptance of Darwin’s theory of evolution by natural selection was universal among biologists, and the synthetic theory had become widely adopted.

Molecular biology and Earth sciences

The most important line of investigation after 1950 was the application of molecular biology to evolutionary studies. In 1953 the American geneticist James Watson and the British biophysicist Francis Crick deduced the molecular structure of DNA (deoxyribonucleic acid), the hereditary material contained in the chromosomes of every cell’s nucleus. The genetic information is encoded within the sequence of nucleotides that make up the chainlike DNA molecules. This information determines the sequence of amino acid building blocks of protein molecules, which include, among others, structural proteins such as collagen, respiratory proteins such as hemoglobin, and numerous enzymes responsible for the organism’s fundamental life processes. Genetic information contained in the DNA can thus be investigated by examining the sequences of amino acids in the proteins.

In the mid-1960s laboratory techniques such as electrophoresis and selective assay of enzymes became available for the rapid and inexpensive study of differences among enzymes and other proteins. The application of these techniques to evolutionary problems made possible the pursuit of issues that earlier could not be investigated—for example, exploring the extent of genetic variation in natural populations (which sets bounds on their evolutionary potential) and determining the amount of genetic change that occurs during the formation of new species.

Comparisons of the amino acid sequences of corresponding proteins in different species provided quantitatively precise measures of the divergence among species evolved from common ancestors, a considerable improvement over the typically qualitative evaluations obtained by comparative anatomy and other evolutionary subdisciplines. In 1968 the Japanese geneticist Motoo Kimura proposed the neutrality theory of molecular evolution, which assumes that, at the level of the sequences of nucleotides in DNA and of amino acids in proteins, many changes are adaptively neutral; they have little or no effect on the molecule’s function and thus on an organism’s fitness within its environment. If the neutrality theory is correct, there should be a “molecular clock” of evolution; that is, the degree to which amino acid or nucleotide sequences diverge between species should provide a reliable estimate of the time since the species diverged. This would make it possible to reconstruct an evolutionary history that would reveal the order of branching of different lineages, such as those leading to humans, chimpanzees, and orangutans, as well as the time in the past when the lineages split from one another. During the 1970s and ’80s it gradually became clear that the molecular clock is not exact; nevertheless, into the early 21st century it continued to provide the most reliable evidence for reconstructing evolutionary history. (See belowThe molecular clock of evolution and The neutrality theory of molecular evolution.)

The laboratory techniques of DNA cloning and sequencing have provided a new and powerful means of investigating evolution at the molecular level. The fruits of this technology began to accumulate during the 1980s following the development of automated DNA-sequencing machines and the invention of the polymerase chain reaction (PCR), a simple and inexpensive technique that obtains, in a few hours, billions or trillions of copies of a specific DNA sequence or gene. Major research efforts such as the Human Genome Project further improved the technology for obtaining long DNA sequences rapidly and inexpensively. By the first few years of the 21st century, the full DNA sequence—i.e., the full genetic complement, or genome—had been obtained for more than 20 higher organisms, including human beings, the house mouse (Mus musculus), the rat Rattus norvegicus, the vinegar flyDrosophila melanogaster, the mosquito Anopheles gambiae, the nematode worm Caenorhabditis elegans, the malaria parasite Plasmodium falciparum, the mustard weed Arabidopsis thaliana, and the yeast Saccharomyces cerevisiae, as well as for numerous microorganisms. Additional research during this time explored alternative mechanisms of inheritance, including epigenetic modification (the chemical modification of specific genes or gene-associated proteins), that could explain an organism’s ability to transmit traits developed during its lifetime to its offspring.

The Earth sciences also experienced, in the second half of the 20th century, a conceptual revolution with considerable consequence to the study of evolution. The theory of plate tectonics, which was formulated in the late 1960s, revealed that the configuration and position of the continents and oceans are dynamic, rather than static, features of Earth. Oceans grow and shrink, while continents break into fragments or coalesce into larger masses. The continents move across Earth’s surface at rates of a few centimetres a year, and over millions of years of geologic history this movement profoundly alters the face of the planet, causing major climatic changes along the way. These previously unsuspected massive modifications of Earth’s past environments are, of necessity, reflected in the evolutionary history of life. Biogeography, the evolutionary study of plant and animal distribution, has been revolutionized by the knowledge, for example, that Africa and South America were part of a single landmass some 200 million years ago and that the Indian subcontinent was not connected with Asia until geologically recent times.

Ecology, the study of the interactions of organisms with their environments, has evolved from descriptive studies—“natural history”—into a vigorous biological discipline with a strong mathematical component, both in the development of theoretical models and in the collection and analysis of quantitative data. Evolutionary ecology (seecommunity ecology) is an active field of evolutionary biology; another is evolutionary ethology, the study of the evolution of animal behaviour. Sociobiology, the evolutionary study of social behaviour, is perhaps the most active subfield of ethology. It is also the most controversial, because of its extension to human societies.

The cultural impact of evolutionary theory

Scientific acceptance and extension to other disciplines

The theory of evolution makes statements about three different, though related, issues: (1) the fact of evolution—that is, that organisms are related by common descent; (2) evolutionary history—the details of when lineages split from one another and of the changes that occurred in each lineage; and (3) the mechanisms or processes by which evolutionary change occurs.

The first issue is the most fundamental and the one established with utmost certainty. Darwin gathered much evidence in its support, but evidence has accumulated continuously ever since, derived from all biological disciplines. The evolutionary origin of organisms is today a scientific conclusion established with the kind of certainty attributable to such scientific concepts as the roundness of Earth, the motions of the planets, and the molecular composition of matter. This degree of certainty beyond reasonable doubt is what is implied when biologists say that evolution is a “fact”; the evolutionary origin of organisms is accepted by virtually every biologist.

But the theory of evolution goes far beyond the general affirmation that organisms evolve. The second and third issues—seeking to ascertain evolutionary relationships between particular organisms and the events of evolutionary history, as well as to explain how and why evolution takes place—are matters of active scientific investigation. Some conclusions are well established. One, for example, is that the chimpanzee and the gorilla are more closely related to humans than is any of those three species to the baboon or other monkeys. Another conclusion is that natural selection, the process postulated by Darwin, explains the configuration of such adaptive features as the human eye and the wings of birds. Many matters are less certain, others are conjectural, and still others—such as the characteristics of the first living things and when they came about—remain completely unknown.

Since Darwin, the theory of evolution has gradually extended its influence to other biological disciplines, from physiology to ecology and from biochemistry to systematics. All biological knowledge now includes the phenomenon of evolution. In the words of Theodosius Dobzhansky, “Nothing in biology makes sense except in the light of evolution.”

The term evolution and the general concept of change through time also have penetrated into scientific language well beyond biology and even into common language. Astrophysicists speak of the evolution of the solar system or of the universe; geologists, of the evolution of Earth’s interior; psychologists, of the evolution of the mind; anthropologists, of the evolution of cultures; art historians, of the evolution of architectural styles; and couturiers, of the evolution of fashion. These and other disciplines use the word with only the slightest commonality of meaning—the notion of gradual, and perhaps directional, change over the course of time.

Toward the end of the 20th century, specific concepts and processes borrowed from biological evolution and living systems were incorporated into computational research, beginning with the work of the American mathematician John Holland and others. One outcome of this endeavour was the development of methods for automatically generating computer-based systems that are proficient at given tasks. These systems have a wide variety of potential uses, such as solving practical computational problems, providing machines with the ability to learn from experience, and modeling processes in fields as diverse as ecology, immunology, economics, and even biological evolution itself.

To generate computer programs that represent proficient solutions to a problem under study, the computer scientist creates a set of step-by-step procedures, called a genetic algorithm or, more broadly, an evolutionary algorithm, that incorporates analogies of genetic processes—for instance, heredity, mutation, and recombination—as well as of evolutionary processes such as natural selection

Groups of 3 persons each will select a focused topic, formulate a thesis about this topic, and research evidence supporting and potentially refuting this thesis. The group will write a paper discussing the topic by presenting and discussing the evidence researched by the group. The group will also present their material in the form of an oral presentation before the class during the penultimate two class periods.


1. The topic must be within the field of evolutionary biology, either covered in class, in your text books, or perhaps not covered in this course. Above all, choose a topic about which you have developed some interest. The topic may be contemporary or historical, empirical or theoretical, organismal or molecular; but it must involve evolutionary biology. You may use the attached list of suggested topics for ideas, but do not feel that you should be limited to these topics. (For example, you might be interested in "the origin of life on planet Earth".)

2. Form a collaborative arrangement with other members in your group. The more collaborative you are, the more that everyone in the group will benefit. Obviously, everyone in your group should agree on a single topic that interests everybody. Your group should meet regularly to discuss the topic.

3. Do some preliminary reading about your topic. Bobst Library maintains an excellent collection of books and journals about evolutionary biology (see the attached list of a few of the journals you may wish to peruse). While reading, keep asking yourself if there is a thesis or theme that is being developed and if there are alternative explanations or hypotheses. (For example, some references appear to suggest that life originated de novo on Earth in a "primordial soup", but other references appear to suggest an extraterrestrial origin for life on Earth.) Keep records (e.g., on index cards) of what information came from which reference. (Of course, you may find you that you want to change your topic, or especially to focus and refineyour topic after you have done preliminary readings.)

 4. Share and discuss your information with your other group members. It may be most beneficial if everyone in the group reads all the same references and discusses what they mean, how (or if) they fit into your project, how they can or cannot be used as evidence, and so on. Some groups may find it easier to have members specialize in a particular part of the research and present their readings to the group. In the latter (less preferable) case, of course, if the "specialist" doesn't get it exactly right, and the group assumes that the "specialist" is an authoritative expert, the group will suffer as a whole.

5. Focus your topic quite narrowly to address a specific thesis or set of alternative theses (as discussed below). (For example, a recent article in the journal Science presented evidence supporting the hypothesis that Earth was "seeded" by meteorites of Martian origin. But there are alternative explanations that suggest the Martian meteorites did not actually contain life forms.) Focused topics are usually much better than broad, general topics (and easier to write about)! The thesis should be a single-sentence statement or proposition about how you view a particularly important aspect of your topic. For example, "the morphospecies concept is a generally practical-but not infallible-means of differentiating species", or "Darwin's interstrain crosses of pigeons demonstrate that several extreme variations may arise at single genetic loci". The thesis statement will be the first sentence of your paper and thus the topic sentence of your first paragraph!

6. Collect additional references to probe the depths of existing knowledge about your focused topic. Collect more evidence and questions that address your focused thesis at greater depth. To find additional and more recent references, use Biological Abstracts, Citation Index, Bobcat, the Web, etc. (You may also want to go back and check the original literature cited by your current books or journal articles.)Learn to use your library!

7. Test out each piece of evidence that you will use by constructively arguing about it with your collaborators. In what aspect(s) does the evidence fail to support your thesis? What alternative possibilities are definitely and not-so-definitely ruled out by the evidence? (Ruling out alternatives is one good way to support your thesis.) What experiments have not yet been done that you could propose that might fill in some of the details or patch some of the holes in the theory underlying your thesis?


1. Decide if you will write a single paper as a group or if each individual will write his/her own paper. In the first case, all coauthors will be equally responsible and thus will share the same grade.

2. Do not just sit down and write your paper!

3. Gather and arrange your data, thesis and arguments. You may find it useful to take notes on cards (along with a note about the literature from which you collected your evidence or argument); cards can be shuffled into different orders, allowing you to easily construct and reconstruct different sequences of coherent ideas.

4. Construct a fairly detailed outline for your paper. You may find it very useful to actually write a "topic sentence" for each item in the outline that might represent a paragraph in the paper. The organization could be some topic-specific version of the following:

I. Thesis paragraph

A. Thesis statement (this is ALWAYS the first sentence of your paper!)

B. How this thesis differs from alternative possibilities

C. The various kinds of evidence we have gathered that support this thesis

II. Introductory and background material

A. The main question(s) or problem(s) to be addressed

B. Why this topic is significant (and why testing these hypotheses is important)

C. Observations that led to the thesis (and alternative theses)

III. Predictions

A. Predictions of patterns or experimental results that would occur if the alternative theses were true

B. Predictions of patterns or experimental results given my thesis

IV. Evidence that supports the thesis and refutes the alternative theses-

For each piece of evidence, cite the appropriate reference and explain how these data both support the thesis and refute alternative theses.

Back up each statement with EVIDENCE and the associated citation!

V. Explanation of anomalous data or data that might seem to refute the thesis-

If the thesis is true, there should be an explanation for why seemingly anomalous data appear; try to resolve any apparent paradoxes. (For example, Darwin argued that the disjunct distribution of cold-weather species on mountain tops could be explained by the glacial retreat as opposed to migration or special creation.)

VI. Conclusion

A. Conclusions and speculations

B. Future prospects

1. Questions or problems that remain unanswered

2. Possible ways of answering or solving them

NOTE!-Your outline must be approved by me before you may continue to write your paper! The outline, with a well-focused and written thesis statement, is due Wednesday, October 24, at 9:30 am.

5. Write the paper, using your outline as a guide. Use topic sentences to begin each paragraph. In the body of the paragraph, explain and develop the topic sentence using cited evidence or your own arguments. When writing each paragraph, adhere to the topic of that paragraph-do not bring in tangential ideas. At the end of the paragraph, write a sentence that connects the paragraph to the next paragraph. Be as concise yet as complete as possible. Be absolutely certain that you do not plagiarize (you can be expelled for this)!

6. Cite specific evidence and construct specific arguments to support your thesis statement. Use data from your library references (books and journal articles) to support your thesis. You should also show what kind of data could refute your thesis. To make your arguments even stronger, you should also explain how the data refute alternative hypotheses. If there are data that are not explained by your thesis, discuss why such apparently anomalous data may exist, even if your thesis is true. Cite appropriate literature in the text whenever you use data or allude to someone else's work (see a journal like Cell for an example of how to do this and the sample paper I have put on reserve in the library). Do NOT cite your literature as footnotes, but list all of your references by author in alphabetical order at the end of your paper (include titles of articles and full citations-again, see Cell for an example).

IMPORTANT: You must cite your references each time you use them in the text. For example: "That oxygen is a component of air is shown by heating metal oxides, collecting the resulting gas and testing its ability to support combustion (Lavoisier, 1778:23)", which cites page 23 in a book written by Antoine Lavoisier in 1778. You must also list the references by author at the end of your paper (in alphabetical order withall appropriate information, such as date, title and publisher if a book or title, journal, volume and pages if a journal article). Failure to do so constitutes plagiarism (i.e., the assumption of another author's work as your own).

Note: Web references (which are not refereed, by the way, and could be considerably error-prone) should be cited by page author (if known), URL, page title, and date of retrieval. Similar data should be cited for other types of electronic media.

7. Type (or word-process) your paper. The body of the paper should be no less and no more than 10 double-spaced pages, 12 point type,NOT dot-matrix, not hand-written (except perhaps for neatly-presented symbols and equations), 1-inch margins, and single-sided pages. Please do NOT right-justify your margins-leave them "ragged" (right-justification results in spaces in strange positions and is distracting to the reader). Please spell-check your work!!! Use regular paper only (like the paper on which these guidelines are printed). Do not use "eraseable" or "onion-skin" papers.

8. Include any figures, illustrations or tables (after the literature cited-NOT within the text) that you think are necessary (and which you cite in the text). Cite the original source(s) of these illustrations or tables. If applicable, original computer source code or long calculations (if required, for example, for a proof) should be included as an appendix at the very end.

9. Finally, put a cover sheet on your paper that includes the title, your name, the date, and a very brief, 200-word (or less) abstract of the paper. This abstract should be as complete a description of the paper as possible-that is, it must describe your thesis, its relevance to evolutionary biology, and what kinds of evidence you bring to bear on this thesis. Do not merely state that the paper "is about" something. Rather, describe the thesis and the evidence that is used to support it. Number all pages consecutively, beginning with the cover page. (You may wish to make a copy of the paper for yourself before you hand it in-just in case.)

DUE DATE (firmly enforced-no exceptions): Wednesday, November 28, at 9:30 AM.

ORAL PRESENTATION (held symposium style, December 5 and10)

The oral presentation of your topic should involve all 3 members of your group. The goal is to present the material in your paper to your peers (i.e., your classmates), so the presentation must be CLEAR, CONCISE, WELL-PREPARED, and UNDERSTANDABLE. Your peers will be helping to grade you.

 1. Your oral presentation must be about the topic, thesis and evidence that you present in your paper. However, you will not be able to present everything in as much detail as in your paper because your talk will be limited to 10 minutes with 2minutes to answer questions.

2. A typical presentation could begin by providing an abstract of your work, similar to the abstract on the cover page of your paper. Make sure you clearly state the thesis, possible alternatives, the evidence you feel supports your thesis and refutes the alternatives, possible problems, and your conclusion. Other than that, the specific format of your presentation will depend on your topic and your own creativity. For example, although many people will wish to present in a straight lecture-type format that is known to work well, a really creative group might wish to present its material as a mock debate, "trial", or news interview. In any format, the important criteria for your evaluation will be clarity of presentation and success at persuasion.

3. Support your presentation with visual aids. Figures, tables or other visual materials should be SIMPLE, CLEAR, and well-organized. If you plan on using anything other than transparencies, please tell me what kind of media you plan to use at least a week before your presentation!

 4. The group should get together to practice their presentations to make sure (1) it fits within the 10-minute limit, and (2) that it's good! The grade of each individual is based on the grade of the group, so if the group looks bad, so will you.

5. You will have 2 minutes to field questions from the audience. How well you answer these questions is also considered in your grade. The only way to prepare for these questions is to know everything you can about your topic and dream up possible questions yourself and try to answer them during your practice sessions. You will also be a member of the audience, and your participation in asking questions will also contribute to your individual evaluations.

Suggested topics and topics of successful papers in past classes-

The phylogenetic origin of HIV

Poor fidelity in HIV reverse transcriptase is an adaptation to the host immune system. (Note that this is also an excellent example of a thesis statement.)

Cystic fibrosis has persisted in human populations because heterozygotes have a selective advantage. (Another excellent thesis statement.)

Molecular data is better than morphological data for phylogenetic inference. (A good thesis, but one that was not successfully proven by the last author.)

Polymorphism has been maintained for tens of millions of years at the Major Histocompatibility Locus by means of "overdominant selection". (Great thesis statement with lots of potential molecular data.)

Mechanisms of recent evolution of antibiotic drug resistance in malaria or tuberculosis

What does "homology" really mean, and can it really be identified?

Transposable element evolution: lineal or reticulate?

Evolution of development

"Altruistic" behavior in social insects

Cooperative behavior in wolf packs: individual or "group" selection?

Undulapodia of eukaryotic cells resulted from endosymbiosis. (A good example of a thesis statement about the evolution of motility in eukaryotic cells.)

Biogeography of camelids

Natural selection as a useful tool in computer algorithms to solve multivariate problems

Natural selection as a useful algorithm in modern drug design by high-tech companies like "Molecular Evolution"

The relationships of tetrapods: are birds more closely related to "reptiles" or to mammals?

The real reason dinosaurs went extinct

Fungi are more closely related to animals than to plants. (A thesis statement.)

Ancient gene duplications resolve the root to the tree of life. (Another thesis statement.)

Evolution of color vision in vertebrates (lots of excellent material here!)

The relationship of humans to other primates

Phylogenetic evidence for the coevolution of nematode parasites and their mammalian hosts

Darwin was not the first to propose Natural Selection as the main agent of evolutionary change. (Again, a thesis statement-the history of evolutionary science is also a perfectly legitimate topic!)

Mapping genetic loci involved in the evolution of Drosophila head shape

Genetic loci involved in Drosophila reproductive isolation (and thus speciation)

Computer simulations of evolutionary genetic principles

The evolution of sexual dimorphism, or of sex itself

How did flight evolve in birds (or insects, mammals or reptiles)?

How many times did flight evolve in mammals? (There are two major bat lineages; did they evolve independently?)

The evolution of eyes: Convergence or ancient sharing of developmental mechanism?

The evolution of eyes: Evidence for developmental constraint provides evidence against design. (Yet another thesis statement.)

Even though he "lost" the great Académie debate of 1830 to his student, Geoffroy's proposal of typological homology between the body plans of insects and vertebrates (i.e., vertebrates are upside-down insects) has been vindicated by recent molecular evidence. (Or has it?) (Another thesis statement-one that combines a famous problem of classical importance with recent molecular evidence!)

List of some evolutionary journals available in Bobst Library-

Evolution (QH301.E9)

Molecular Biology and Evolution (QH506.M642)

Molecular Phylogenetics and Evolution (QH367.5.M56)

Journal of Molecular Evolution (QH431.A1J6)

American Naturalist (QH1.A5)

Nature (Q1.N3)

Science (Q1.S32)

Systematic Biology

One thought on “Evolution Essay Outline

Leave a comment

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *